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ABSTRACT 

 

To take a sound strategic investment decision, prediction of financial markets becomes 

indispensable. The time series forecasting finds application in various traditional domains like the 

Auto-Regressive Integrated Moving Average (ARIMA) model as the model fully leverages its 

underlying capability of capturing trends and patterns in the historical data. This paper discusses 

the ARIMA model for forecasting life via torrent in the financial market and employs stock market 

index values from the Bombay Stock Exchange (BSE). The study revealed that ARIMA works 

particularly well for short-term forecasting, which gives essential market trend indications. This 

proves its usefulness for financial forecasting and also offers some valuable observations to 

investors and analysts wishing to study market behavior and improve forecasting accuracy. 

 

Keywords: Financial Market Prediction, ARIMA Model, Time Series Forecasting, Short-term Prediction, 

Market Movements, Stock Index Data. 

 

 

 

I.INTRODUCTION 

 

According to Karamouz and Araghinejad (2012), ARIMA models are essentially dynamic and therefore 

completely unsuitable for reconstructing missing values. In another offshoot, Balaguer et al. (2008) studied 

the joint application of time series models, in particular ARMA and ARIMA, and artificial neural networks in 

different hydrological domains. In thiswise, Toth et al. (2000) utilized a combination of artificial neural 

networks and ARMA models to forecast rainfall occurrences. In much the same way, Mohammadi et al. 

(2005) applied artificial neural networks, regression techniques, and ARMA models to predict inflow to the 

Karaj reservoir by snowmelt. Chegini (2012) noticed the highest inflows occurred during the spring as a 

result of snow melting after winter thawing.  

 

A significant contribution to the modeling and forecasting of financial markets using ARIMA techniques has 

been from M. Khasel et al. (2009), C. Lee & C. Ho (2011), and M. Khashei et al. (2012). Itimi et al. (2018) , 

on the other hand, studied the positive risk premium theory in stock indices where it was revealed that 

higher returns are generally expected from investments with greater risk. Their outcomes inferred that even 

though highly volatile and relatively underdeveloped, the Nigerian stock market still reacts to 

macroeconomic shoves.  

 

ONOUHA (2018) carried out deeper studies on predictability of stock market and set his sights on GCC 

(Gulf Cooperation Council) countries with a view to analyzing crude oil price-stock returns nexus. The 

study revealed that oil-based model forecasts outperformed those relying on traditional time series 

techniques, namely, AR, MA, ARMA, and ARIMA, based on the methodology of Wasteland et al. (2012, 
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2015). This conclusion was very much valid for both in-sample and out-of-sample forecasts and uniformly 

across different oil price indices (Brent and WTI) and diverse forecast horizons (30 and 60 days). And 

according to Mohammed Nafie and Alkesh (2019), the growth of the economy of Oman is expected at a 

steady rate of 3% in real terms. The forecast states that Oman is going to grow the most out of all GCC 

nations in 2019 which translates to a good business environment for investments, both domestic and 

foreign. 

 

 

 
II.RELATED WORK 

 

Augmented Dickey-Fuller (ADF) 

 

The Augmented Dickey-Fuller (ADF) test is a widely used statistical method for testing whether a time 

series is stationary. Stationarity is really, really important in the world of time series analysis because it 

implies no trends or seasonality affecting the data. A stationary time series has a stable mean and variance 

over time, making it more appropriate for predictive modeling. Seasonal patterns and trends can really 

knock things off track at various points in time, so ensuring the data is stationary is half the battle in 

developing effective models that will forecast future values accurately. 

 

The methods of testing for stationarity are numerous and include the W-D Test, Autocorrelation Function 

(ACF), Partial Autocorrelation Function (PACF), Ljung-Box Test, t-Statistic Test, and KPSS-Test. The 

above tests collectively help determine whether or not a time series is stationary. ADF test is by far a 

foremost unit root test that's especially important to confirm whether or not stationarity prevails in a dataset. 

It seeks a static relationship, establishing a firm base for subsequent modeling and predictive examination. 

 

These tests are crucial tools in time series analysis, allowing researchers to systematically evaluate and 

verify the stationarity of data. Applying these robust statistical methods improves the reliability of future 

analysis, in that models and forecasts are built on a firm understanding of the time series behavior. 

Employing these methods demonstrates the meticulous and diligent nature required for time-dependent 

data analysis, particularly in areas where proper forecasting and credible models are critical. 

 

t

k

i

 
0

1-t2t0t 
     

 

 

t : Represents the monthly index value of the individual stock at time tt. 

β: Denotes the coefficient to be estimated in the regression model. 

k: Indicates the number of lagged terms included in the analysis. 

t: Refers to the trend term, capturing any linear trend in the time series. 

α2: Represents the estimated coefficient associated with the trend term. 

α0: Stands for the constant term in the model. 

 t: Refers to white noise, representing random error terms assumed to be independently and identically 

distributed with a mean of zero and constant variance. 
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III.METHODOLOGY 

 

Box-Jenkins Methodology   

 

The Box-Jenkins methodology is a systematic approach to time series forecasting, primarily using the 

ARIMA (p, d, q) model. This model, developed by George Box and Gwilym Jenkins in 1970, builds upon 

the Autoregressive Moving Average (ARMA) model, incorporating differencing techniques to handle non-

stationary data. The methodology follows a structured process to identify the most suitable ARIMA model 

for a given dataset, making it a widely used technique in time series analysis.   
 

Components of the ARIMA Model   

 

Autoregressive (AR) Process of Order p: 

1 1 2 2            t t t p t p tY µ Y Y Y                 ò  

 

In this equation:   

Yt is the value of the time series at time t.   

µ is a constant term. 

21, ,  - - -, p    are the autoregressive coefficients representing the influence of past observations. 

 t is a random error term, also known as white noise.   
 

Moving Average (MA) Process of Order q:  

 

1 1 2 2             t t t q t q tY µ               ò ò ò ò
 

 

   Here, 21, , - - -, q   are the moving average coefficients, and past error terms influence the current 

value of the time series.   

 

General ARIMA Model (p, d, q):   

 

Yt=µ +ϕ1Yt-1+ ϕ2 Yt-2+ - - - - - - - + ϕpYt-p - θ1 ϵ t-1 - θ2 ϵ t-2 - - - - - -   - θqϵ t-q + ϵ t 

 

 

Yt represents the differenced time series, meaning it has been adjusted to remove trends and achieve 

stationarity.   

 

 The d in ARIMA (p, d, q) refers to the number of times the series was differenced.   

 
 t is a random error term, assumed to be independently and normally distributed with zero mean and 

constant variance.  

 

 The coefficients φ and θ are estimated during the model-fitting process.   
 

Model Selection and Evaluation : 

  

To determine the best-fitting ARIMA model, analysts use various statistical tests and criteria, including:   

 

-Box-Ljung Q Statistic: Checks whether the residuals (errors) of the model are randomly distributed.   

-  R2 (Coefficient of Determination): Measures how well the model explains variability in the data.   

http://www.ijisea.org/
mailto:editor@ijisea.org
https://doi.org/10.5281/zenodo.15711835


ISSN: 2582 - 6379 

IJISEA Publications 

International Journal for Interdisciplinary Sciences and Engineering Applications 
IJISEA - An International Peer- Reviewed Journal 

2025, Volume 6 Issue 2 

www.ijisea.org 

 

 

 IJISEA – editor@ijisea.org          https://doi.org/10.5281/zenodo.15711835  Page 138 

 

- Root Mean Square Error (RMSE): Quantifies the accuracy of predictions by calculating the average 

squared differences between actual and predicted values.   

- Akaike Information Criterion (AIC) & Bayesian Information Criterion (BIC): Help identify the best model by 

balancing complexity and accuracy.   

Performance of the Models 

 

Mean Absolute Percentage Error (MAPE): 

 

Mean Absolute Percentage Error (MAPE) is a commonly used statistical measure that evaluates the 

accuracy of a forecasting or predictive model. It represents the average percentage difference between the 

actual and predicted values, making it a widely accepted metric in business analytics, demand forecasting, 

and time series analysis. Since MAPE expresses error as a percentage, it allows easy comparison across 

different datasets and industries.   

The formula for calculating MAPE is:   

1

ˆ1
 100

n
t t

t t

Y Y
MAPE

n Y

 


  

Where:   

Yt  = Actual observed value at time t  

ˆ
tY = Predicted or forecasted value at time t   

n = Total number of observations   
 

Interpreting MAPE Values: 

- 0% MAPE → Perfect prediction (no error).   

- Less than 10% → Highly accurate forecast.   

- 10% – 20% → Good accuracy.   

- 20% – 50% → Moderate accuracy.   

- More than 50% → Poor accuracy, indicating unreliable forecasts.   

 

MAPE is a valuable tool for assessing the performance of predictive models, especially in industries that 

rely on accurate forecasts. However, for a more comprehensive evaluation, it is often used alongside other 

metrics such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). 

 

Mean Absolute Scaled Error (MASE): 

 

The Mean Absolute Scaled Error (MASE) is a widely used metric for evaluating the accuracy of forecasting 

models. Unlike traditional error measures like Mean Absolute Percentage Error (MAPE), which can 

struggle with zero or near-zero values, MASE provides a standardized error measurement that allows for 

fair comparison across different datasets and time series. It is particularly beneficial when dealing with 

seasonal data or when comparing models across multiple forecasting problems.   

 

The MASE formula is:   
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Where:   
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Yt represents the actual observed value at time t.   

ˆ
tY is the predicted value at time t. 

n is the total number of observations.   

 

The denominator represents the mean absolute error of a naïve forecast, which assumes that each value 

is simply equal to the previous value.   

 

Interpreting MASE Values: 

 

- MASE = 1 → The forecasting model performs similarly to a naïve prediction.   

- MASE < 1 → The model is more accurate than a simple naïve forecast.   

- MASE > 1 → The model performs worse than a naïve forecast, meaning a basic method would have 

been more effective.   

 

MASE is a powerful and reliable metric for assessing the performance of forecasting models. It provides a 

more balanced evaluation compared to traditional error measures, making it particularly useful for real-

world applications. However, it is best used in combination with other accuracy metrics, such as Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE), to get a comprehensive understanding of a 

model’s effectiveness. 

 

 Akaike Information Criterion (AIC):  

The Akaike Information Criterion (AIC) is a widely used statistical tool for model selection in time series 

analysis, regression, and machine learning. It helps identify the most suitable model by balancing the 

trade-off between accuracy and complexity. AIC discourages overfitting by penalizing models with 

excessive parameters, ensuring that the chosen model is both effective and efficient.   

 

AIC Formula   

 

2 2ln( )AIC k L   

 

Where:   

k = The number of estimated parameters in the model   

L = The maximum likelihood function   

ln(L) = The log-likelihood of the model   
 

Interpreting AIC Values:   

 

Smaller AIC values mean a better fit with lower complexity. 

A higher AIC suggests that the model might be overfitting or not fitting the data adequately. 

Although it compares well between models (as it is a relative measure of accuracy), AIC does not supply 

an absolute measure. 

 

AIC is a useful tool that helps create the best model without overcomplicating it. Choosing the model with 

minimum AIC allows the analysts to maintain a trade-off between accuracy and simplicity. Nonetheless, 

utilizing AIC with other measures provide a more thorough characterization of the goodness of fit of the 

model such as using Metrics such as Bayesian Information Criterion (BIC) and Mean Squared Error 

(MSE). 
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IV.RESULTS 

 

 

Null Hypothesis : Time series is non-stationary (has a unit root) 

 

As an alternative, Our null hypothesis states that the time series is non-stationary (has a unit root). 

 

To ensure the applicability of ARIMA modeling, we begin by testing for stationarity using the Augmented 

Dickey-Fuller (ADF) test. The null hypothesis asserts that the series possesses a unit root, indicating non-

stationarity. 
 

Interpreting the ADF Test Results 

At Original Level 

Test Statistic: -1.945 

p-value: 0.6021 

Since the p-value is greater than 0.05, we fail to reject the null hypothesis, suggesting that the time series 

is non-stationary in its original form. 

 

After First Differencing 

Test Statistic: -11.038 

p-value: 0.0063 

Here, the p-value is less than 0.05, indicating that we reject the null hypothesis. This confirms that the 

differenced time series is stationary, making it suitable for time series modeling. 

 

Analysis of ARIMA Models Based on MAPE   

 

Table 1: Results of Mean Absolute Percentage Error (MAPE) test 

S.No ARIMA Model MAPE (%) 

1 ARIMA(1,1,1) 4.82 

2 ARIMA(2,1,1) 3.91 

3 ARIMA(1,1,2) 4.35 

4 ARIMA(2,1,2) 3.87 

5 ARIMA(3,1,2) 4.26 

 

 

Selecting the Best Model 

Among all the models used for testing, has the smallest, so it is the best to choose. 

The minor differences in MAPE for the various ARIMA models indicate that their forecast performances 

are all very similar. 

As MAPE calculates error in terms of percentage, it is the best to choose the model with the lowest 

value. 
 

Lowest MAPE: ARIMA(2,1,2) → Best short-term prediction performance. 

 

Even by MAPE alone, appears to be the best model to use for forecasting because it has a lower error 

rate. Nonetheless, to verify robustness, other model selection criteria like Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and Root Mean Square Error (RMSE) must also be taken 

into consideration before a decision is made. 
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Evaluating ARIMA Models Using MASE 

 

The Mean Absolute Scaled Error (MASE) is an important measure for assessing the accuracy of 

prediction models. Contrary to common error metrics, MASE scales forecast errors relative to a naïve 

model, so it provides a sound metric for measuring predictive accuracy. A MASE measure less than 1 is 

an indicator that the model performs better than a simple forecast, whereas a measure greater than 1 

represents less accuracy. 
 

Table 2: Results of Mean Absolute Scaled Error (MASE) test 

S.No ARIMA Model MASE 

1 ARIMA(1,1,1) 0.87 

2 ARIMA(2,1,1) 0.75 

3 ARIMA(1,1,2) 0.82 

4 ARIMA(2,1,2) 0.70 

5 ARIMA(3,1,2) 0.79 

 

Lowest MASE: ARIMA(2,1,2) → More accurate than a naïve model. 

 

Selecting the Best ARIMA Model Using AIC  

 

Akaike Information Criterion (AIC) is one of the most important metrics used for statistical model 

comparison. It indicates the best fit and penalizes high complexity to make the model efficient as well as 

accurate. The lower AIC value denotes a better model by balancing goodness of fit with simplicity. 
 

Table 3: Results of Akaike Information Criterion (AIC) test 

S.No ARIMA Model AIC 

1 ARIMA(1,1,1) 295.82 

2 ARIMA(2,1,1) 287.34 

3 ARIMA(1,1,2) 290.11 

4 ARIMA(2,1,2) 284.57 

5 ARIMA(3,1,2) 289.26 

 

Lowest AIC: ARIMA(2,1,2) → Best model balancing fit and complexity. 

 

 

Conclusion on Stationarity: 

 

The data is non-stationary at level but becomes stationary after first differencing. Therefore, the time series 

is integrated of order one, denoted as I(1). This validates the use of an ARIMA(p,1,q) model for forecasting. 

 

Given this, the performance evaluation from MAPE, MASE, and AIC (see Tables 1–3) confirms that 

ARIMA(2,1,2) is the most robust model, showing the lowest forecasting error and optimal complexity, 

making it highly suitable for predicting short-term movements in the financial market. 
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